

The Tozti Project

This project is part of our scholarship at the ENS de Lyon [https://ens-lyon.fr], specifically the
software project [http://graal.ens-lyon.fr/~ecaron/Teaching/ensproject.html] course of the M1 of Foundation of Computer Science
supervised by Eddy Caron with the help of Damien Reimert.

User’s Guide

This part of the documentation is directed towards associations and
association members which want to use this project.

Developer’s Guide

This part of the documentation contains specifications and explainations about
the inner workings of the project.

	1. Quickstart

	2. Architecture
	2.1. Extensions

	3. API
	3.1. Error format

	3.2. Concepts and Data Structures

	3.3. Endpoints

	4. Developing Extensions
	4.1. Getting Started

	4.2. Using Tozti’s JS api

	5. API Reference
	5.1. tozti.utils

	5.2. tozti.store

	5.3. tozti.app

Project internals

For the internal organisation, workflows and anything related to the software
project course, see Internals. If you want to write tests, a small documentation is available at Writing tests.

1. Quickstart

To start working on tozti you only need python3 and git (you should be able
to install them from your package manager). Make sure you have at least python
3.5 (for the async/await syntax) and setuptools installed:

python3 --version
python3 -m ensurepip --upgrade # may need root privileges

One good way to organize yourself is to create a tozti folder somewhere:

mkdir tozti && cd tozti

A good practice when working on python projects is to setup a virtual
environnement (venv). A venv behaves much like a separated python installation:
it has it’s own separated list of installed packages so that when you are
working on two projects that need different version of a specific package you
just put them in different venvs and install different versions on each. For
more informations see the venv [https://docs.python.org/3.6/library/venv.html#module-venv] module and PEP 405 [https://www.python.org/dev/peps/pep-0405]. You may
create a venv named venv inside the tozti folder with:

python3 -m venv venv # create it
source venv/bin/activate # activate it

Now that you are inside the venv (you should see (venv) at the beginning of
your prompt), the pip and python commands will be aliased to the ones
from the venv. To deactivate it just issue deactivate. Now you can clone
the repos, install them inside your venv and start tozti:

git clone git@github.com:tozti/tozti && cd tozti
pip install -r requirements.txt
python3 -m tozti dev # from the root of the repo

Extensions are located inside the extensions folder. To build one, make
sure you have the npm package, then type:

npm install # only needed when you change package.json
npm run build # build the *.vue files to browser-compatible javascript

2. Architecture

Tozti serves 3 main HTTP namespaces:

	/static: usual static files (javascript, css, images, etc)

	/api: REST endpoints to interact with the server

	anything else will be responded to with the main index.html

2.1. Extensions

The tozti core is really lightweight but it has the ability to load extensions.
During the startup, the server will search for extensions in the extensions
subfolder of the tozti repository root.

2.1.1. Directory structure and server.py

An extension is a folder (whose name will determine the prefix under which the
extension’s files are served) containing at least a server.py file (or
server/__init__.py). This file must contain a global variable MANIFEST
that is a dictionary containing the following keys (any one being optional):

The tozti core is really lightweight but it has the ability to load extensions.
For now, you only need to know that extension is a folder providing a python
file (server.py), describing how the extension works on the server (its
routes, which files must be included from the client…).
An extension can be installed by pasting its folder inside tozti’s
extensions/ folder. During startup, the server will go through every
subfolders of extensions/ and try to load them as an extension.

	includes

	A list of css or js files that must be included in the main index.html.
Usually you will put there "main.js" which contains the code to register
or patch components. The file paths must be relative to the dist
subfolder of the extension (see below).

	_god_mode

	Beware, this can be dangerous if used incorrectly! This should be a function
taking as argument the main aiohttp.web.Application [https://aiohttp.readthedocs.io/en/stable/web_reference.html#aiohttp.web.Application] object. You
can use it to register custom middlewares or do otherwise weird stuff.

The extension can contain a dist folder. The content of this folder will
be served at the URL /static/<extension-name>.

2.1.2. Vuejs initialization

	See example in branch sample-extension [https://github.com/tozti/tozti/tree/sample-extension/extensions/hello-world].

	See an intro [https://vuejs.org/v2/guide/#Composing-with-Components]
and some doc [https://vuejs.org/v2/guide/components.html] on components.

	See template syntax [https://vuejs.org/v2/guide/syntax.html].

3. API

The tozti core provides an API to perform operations on the database prefixed
with /api/store. This API is largely inspired by JSON API [http://jsonapi.org/] so you are
encouraged to go take a look at their specification.

3.1. Error format

The format of the errors follows JSON API errors [http://jsonapi.org/format/#error-objects]. If a request raised an
error, the server will send back a response with status code 500, 404
or 400. This response might send back a json object with an entry
errors containing a list of json objects with the following properties:

	code

	The name of the error

	status

	Status code of the error

	title

	Short description of the error

	detail

	More about this error. This entry might not be present.

	traceback

	Traceback of the error. This entry might not be present and is included
only if tozti is launched in dev mode.

3.2. Concepts and Data Structures

3.2.1. Resources

Resources and resource objects [http://jsonapi.org/format/#document-resource-objects] are the main concept of the store API. A
resource is what we would call an entity in SQL or hypermedia on the web.
A resource object is represented as a json object with the following
properties:

	id

	An UUIDv4 [https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)] which uniquely identifies a resource.

	type

	The name of a type object.

	attributes

	An arbitrary JSON object where each attribute is constrained by the
type of the resource.

	relationships

	A JSON object where the keys are relationship names (just strings) and
values are relationship objects.

	meta

	A JSON object containing some metadata about the resource. For now it
only contains created and last-modified which are two
self-explanatory dates in ISO 8601 format (UTC time zone).

3.2.2. Relationships

A relationship is a way to create a directed and tagged link between two
resources. Relationships can be to-one (resp. to-many) in which case
they link to one (resp. a sequence) of other resources. Practically, a
resource object is a JSON object with the following properties (beware,
here we diverge a little from the JSON API spec):

	self

	An URL pointing to the current relationship object. This URL can be
used to operate on this relationship.

	data

	In the case of a to-one relationship, this is a linkage object, in the
case of a to-many relationship, this is an array of linkage objects.

Linkages are simply pointers to a resource. They are JSON objects with three
properties:

	id

	The ID of the target resource.

	type

	The type of the target resource.

	href

	An URL pointing to the target resource.

3.2.3. Types

A type object is simply a JSON object with the following properties:

	attributes

	A JSON object where keys are allowed (and required) attribute names for
resource objects and values are JSON Schemas. A JSON Schema [http://json-schema.org/] is a
format for doing data validation on JSON. For now we support the Draft-04
version of the specification (which is the latest supported by the library
we use).

	relationships

	A JSON object where the keys are allowed (and required) relationship names
and keys are relationship description objects.

Relationship description objects are of 2 kinds, let’s start with the simple
one:

	arity

	Either "to-one" or "to-many", self-explanatory.

	type

	This property is optional and can be used to restrict what types the targets
of this relationship can be. It can be either the name of a type object or
an array of names of allowed type objects.

The other kind of relationship description exists because relationships are
directed. As such, because sometimes bidirectional relationships are useful, we
would want to specify that some relationship is the reverse of another one. To
solve that, instead of giving arity and type, you may give
reverse-of property is a JSON object with two properties: type (a type
URL) and path (a valid relationship name for that type). This will specify
a new to-many relationship that will not be writeable and automatically
filled by the Store engine. It will contain as target any resource of the given
type that have the current resource as target in the given relationship name.

Let’s show an example, we will consider two types: users and groups.

// http://localhost/types/user.json
{
 "attributes": {
 "login": {"type": "string"},
 "email": {"type": "string", "format": "email"}
 },
 "relationships": {
 "groups": {
 "reverse-of": {
 "type": "group",
 "path": "members"
 }
 }
 }
}

// http://localhost/types/group.json
{
 "attributes": {
 "name": {"type": "string"}
 },
 "relationships": {
 "members": {
 "arity": "to-many",
 "type": "user"
 }
 }
}

Now when creating a user you cannot specify it’s groups, but you can specify
members when creating (or updating) a given group and the system will
automagically take care of filling the groups relationship with the current
up-to-date content.

3.3. Endpoints

We remind that the API is quite similar to what JSON API [http://jsonapi.org/] proposes.
In the following section, type warrior is the type defined as:

'attributes': {
 'name': { 'type': 'string' },
 'honor': { 'type': 'number'}
},
'relationships': {
 "weapon": {
 "arity": "to-one",
 "type": "weapon",
 },
 "kitties": {
 "arity": "to-many",
 "type": "cat"
 }

}

A warrior has a name and a certain quantity of honor. He also possesses a
weapon, and can be the (proud) owner of several cats (or no cats).

3.3.1. Resources

3.3.1.1. Fetching an object

To fetch an object, you must execute a GET request on
/api/store/resources/{id} where id is the ID of the resource.

	Error code:

	
	404 if id corresponds to no known objects.

	400 if an error occurred when processing the object (for example, one of the object linked to it doesn’t exists anymore in the database).

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a resource object under JSON format.

	Example:

	Suppose that an object of type warrior and id a0d8959e-f053-4bb3-9acc-cec9f73b524e exists in the database. Then:

>> GET /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e
200
{
 'data':{
 'id':'a0d8959e-f053-4bb3-9acc-cec9f73b524e',
 'type':'warrior',
 'attributes':{
 'name':'Pierre',
 'honor': 9000
 },
 'relationships':{
 'self':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/self',
 'data':{
 'id':'a0d8959e-f053-4bb3-9acc-cec9f73b524e',
 'type':'warrior',
 'href':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e'
 }
 },
 'weapon':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/friend',
 'data':{
 'id':'1bb2ff78-cefb-4ce1-b057-333f5baed577',
 'type':'weapon',
 'href':'/api/store/resources/1bb2ff78-cefb-4ce1-b057-333f5baed577'
 }
 },
 'kitties':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/friend',
 'data':[{
 'id':'6a4d05f1-f04a-4a94-923e-ad52a54456e6',
 'type':'cat',
 'href':'/api/store/resources/6a4d05f1-f04a-4a94-923e-ad52a54456e6'
 }]
 }
 },
 'meta':{
 'created':'2018-02-05T23:13:26',
 'last-modified':'2018-02-05T23:13:26'
 }
 }
}

3.3.1.2. Creating an object

To create an object, you must execute a POST request on
/api/store/resources where the body is a JSON object representing the
object you want to send. The object must be encapsulated inside a data entry.

	Error code:

	
	404 if one of the object targeted by a relationship doesn’t exists

	400 if an error occurred when processing the object. For example, if
the json object which was sended is malformated, or if the body of the
request is not JSON.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a resource
object under JSON format.

	Example:

	Suppose that an object of type warrior and id
a0d8959e-f053-4bb3-9acc-cec9f73b524e exists in the database. Then:

>> POST /api/store/resources {'data': {'type': 'warrior',
 'attributes': {'name': Pierre, 'honor': 9000},
 'relationships': {
 'weapon': {'data': {'id': <id_weapon>}},
 'kitties': {'data': [{'id': <kitty_1_id>}]}
 }}}
200
{
 'data':{
 'id':'a0d8959e-f053-4bb3-9acc-cec9f73b524e',
 'type':'warrior',
 'attributes':{
 'name':'Pierre',
 'honor': 9000
 },
 'relationships':{
 'self':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/self',
 'data':{
 'id':'a0d8959e-f053-4bb3-9acc-cec9f73b524e',
 'type':'warrior',
 'href':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e'
 }
 },
 'weapon':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/friend',
 'data':{
 'id':'1bb2ff78-cefb-4ce1-b057-333f5baed577',
 'type':'weapon',
 'href':'/api/store/resources/1bb2ff78-cefb-4ce1-b057-333f5baed577'
 }
 },
 'kitties':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/friend',
 'data': [{
 'id':'6a4d05f1-f04a-4a94-923e-ad52a54456e6',
 'type':'cat',
 'href':'/api/store/resources/6a4d05f1-f04a-4a94-923e-ad52a54456e6'
 }]
 }
 },
 'meta':{
 'created':'2018-02-05T23:13:26',
 'last-modified':'2018-02-05T23:13:26'
 }
 }
}

3.3.1.3. Editing an object

To edit an object, you must execute a PATCH request on
/api/store/resources/{id} where id is the ID you want to update. The
body of the request must be a JSON object representing the change you want to
operate on the object. The object must be encapsulated inside a data entry.
Remark: you don’t need to provide every entries.

	Error code:

	
	404 if id corresponds to no known objects.

	400 if an error occurred when processing the object. For example, if
the json object which was sended is malformated, or if the body of the
request is not JSON.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a resource
object under JSON format representing the object (after changes are
applied).

	Example:

	We suppose the object with id a0d8959e-f053-4bb3-9acc-cec9f73b524e
exists in the database. Then:

>> PATCH /api/store/resources {'data': {'type': 'warrior',
 'attributes': {'name': Luc},
 'relationships': {
 'weapon': {'data': {'id': <id_weapon_more_powerfull>}},
 }}}
200
{
 'data':{
 'id':'a0d8959e-f053-4bb3-9acc-cec9f73b524e',
 'type':'warrior',
 'attributes':{
 'name':'Luc',
 'honor': 9000
 },
 'relationships':{
 'self':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/self',
 'data':{
 'id':'a0d8959e-f053-4bb3-9acc-cec9f73b524e',
 'type':'warrior',
 'href':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e'
 }
 },
 'weapon':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/friend',
 'data':{
 'id':'<id_weapon_more_powerfull>',
 'type':'weapon',
 'href':'/api/store/resources/<id_weapon_more_powerfull>'
 }
 },
 'kitties':{
 'self':'/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/friend',
 'data': [{
 'id':'6a4d05f1-f04a-4a94-923e-ad52a54456e6',
 'type':'cat',
 'href':'/api/store/resources/6a4d05f1-f04a-4a94-923e-ad52a54456e6'
 }]
 }
 },
 'meta':{
 'created':'2018-02-05T23:13:26',
 'last-modified':'2018-02-05T23:13:26'
 }
 }
}

3.3.1.4. Deleting an object

To delete an object, you must execute a DELETE request on
/api/store/resources/{id} where id is the ID you want to update.
Remark: you don’t need to provide every entries.

	Error code:

	
	404 if id corresponds to no known objects.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back an empty JSON
object.

	Example:

	We suppose the object with id a0d8959e-f053-4bb3-9acc-cec9f73b524e
exists in the database. Then:

>> DELETE /api/store/resources
200
{}

3.3.2. Relationships

In the same way that you can act on resources, you can also act on
relationships.

3.3.2.1. Fetching a relationship

To fetch a relationship, you must execute a GET request on
/api/store/resources/{id}/{rel} where id is the ID of the resource
possessing the relationship you want to access, and rel the name of the
relationship.

	Error code:

	
	404 if id corresponds to no known objects or rel is an
invalid relationship name.

	400 if an error occurred when processing the object.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a relationship
object under JSON format.

	Example:

	Suppose that an object of type warrior and id
a0d8959e-f053-4bb3-9acc-cec9f73b524e exists in the database. Then:

>> GET /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties
200
{
 "data": {
 "self": "/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties", "data": [{
 "id": "93b41bf0-73e8-4b37-b2b9-d26d758c2539",
 "type": "cat",
 "href": "/api/store/resources/93b41bf0-73e8-4b37-b2b9-d26d758c2539"
 }, {
 "id": "dff2b520-c3b0-4457-9dfe-cb9972188e48",
 "type": "cat",
 "href": "/api/store/resources/dff2b520-c3b0-4457-9dfe-cb9972188e48"
 }]
 }
}

>> GET /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/weapon
200
{
 "data": {
 "self": "/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/weapon", "data": {
 "id": "34078dd5-516d-42dd-816d-6fbfd82a2da9",
 "type": "weapon",
 "href": "/api/store/resources/34078dd5-516d-42dd-816d-6fbfd82a2da9"
 }
 }
}

3.3.2.2. Updating a relationship

To update a relationship (which is not an automatic relationship), you must
execute a PUT request on /api/store/resources/{id}/{rel} where id
is the ID of the resource possessing the relationship you want to access, and
rel the name of the relationship. The content of your request is a JSON
object containing:

	for a to-one relationship the ID of the new target

	for a to-many relationship several IDs representing the new targets

	Error code:

	
	404 if id corresponds to no known objects or rel is an
invalid relationship name.

	400 if an error occurred when processing the object.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a relationship
object under JSON format.

	Example:

	Suppose that an object of type warrior and id
a0d8959e-f053-4bb3-9acc-cec9f73b524e exists in the database. We also
suppose that its relationship kitties possesses two targets having id
<id1> and <id2>. The relationship weapon targets
<id_sword>. Then:

>> PUT /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties {'data': [{'id': <id3>}]}
200
{
 "data": {
 "self": "/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties", "data": [{
 "id": <id3>,
 "type": "cat",
 "href": "/api/store/resources/<id3>"
 }]
 }
}

>> PUT /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/weapon {'data': {'id': <id_shotgun>}}
200
{
 "data": {
 "self": "/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/weapon", "data": [
 "id": <id_shotgun>,
 "type": "weapon",
 "href": "/api/store/resources/<id_shotgun>"
]
 }
}

3.3.2.3. Adding new targets to a relationship

To add new targets to a to-many relationship, you must execute a POST
request on /api/store/resources/{id}/{rel} where id is the ID of the
resource possessing the relationship you want to access, and rel the name
of the relationship. The content of your request is a JSON object containing
the ids of the objects you want to add to the relationship.

	Error code:

	
	404 if id corresponds to no known objects or rel is an
invalid relationship name.

	403 if the relationship is not a too-many relationship

	400 if an error occurred when processing the object.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a relationship
object under JSON format.

	Example:

	Suppose that an object of type warrior and id
a0d8959e-f053-4bb3-9acc-cec9f73b524e exists in the database. We also
suppose that its relationship kitties possesses one targets having id
<id1>. Then:

>> POST /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties {'data': [{'id': <id2>}, {'id': <id3>}]}
200
{
 "data": {
 "self": "/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties", "data": [{
 "id": <id1>,
 "type": "cat",
 "href": "/api/store/resources/<id1>"
 }, {
 "id": <id2>,
 "type": "cat",
 "href": "/api/store/resources/<id2>"
 }, {
 "id": <id3>,
 "type": "cat",
 "href": "/api/store/resources/<id3>"
 }]
 }
}

3.3.2.4. Deleting a relationship

To fetch some targets from a to-many relationship, you must execute a
DELETE request on /api/store/resources/{id}/{rel} where id is the
ID of the resource possessing the relationship you want to access, and rel
the name of the relationship. The content of your request is a JSON object
containing the ids of the objects you want to remove from the relationship.

	Error code:

	
	404 if id corresponds to no known objects or rel is an
invalid relationship name.

	403 if the relationship is not a too-many relationship

	400 if an error occurred when processing the object.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a relationship
object under JSON format.

	Example:

	Suppose that an object of type warrior and id
a0d8959e-f053-4bb3-9acc-cec9f73b524e exists in the database. We also
suppose that its relationship kitties possesses three targets having
ids <id1>, <id2> and <id3>. Then:

>> DELETE /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties {'data': [{'id': <id1>}, {'id': <id3>}]}
200
{
 "data": {
 "self": "/api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/kitties", "data": [{
 "id": <id2>,
 "type": "cat",
 "href": "/api/store/resources/<id2>"
 }]
 }
}

>> DELETE /api/store/resources/a0d8959e-f053-4bb3-9acc-cec9f73b524e/weapon
403
{
 "errors": [{
 "code": "BAD_RELATIONSHIP",
 "title": "a relationship is invalid",
 "status": "403",
 "detail": "to-one relationships cannot be deleted"
 }]
}

3.3.3. Types

3.3.3.1. Fetching all instances of a given type

To fetch all instances of a given type <type>, you must execute a
GET request on /api/store/by-type/<type>.

	Error code:

	
	404 if the type doesn’t exists

	400 if an error occurred when processing the object.

	200 if the request was successful.

	Returns:

	If the request is successful, the server will send back a list of linkage
objects encapsulated under a data entry. Each linkage object points toward
a ressources having type <type>

	Example:

	To fetch every warrior present inside our store, you can proceed as
following:

>> GET /api/store/by-type/warrior
200
{
 "data": [
 {
 "id": "60f1677b-2bbb-4fd9-9a7a-3a20dbf7b5af",
 "type": "core/user",
 "href": "/api/store/resources/60f1677b-2bbb-4fd9-9a7a-3a20dbf7b5af"
 }, {
 "id": "605ab4bc-172b-416e-8a13-186cf3cd1e2e",
 "type": "core/user",
 "href": "/api/store/resources/605ab4bc-172b-416e-8a13-186cf3cd1e2e"
 }]
}

	Remark:

	Most of the time, type names are under this form: <ext-name>/<type-name where
<ext-name> is the name of the extension defining the type <type-name>. To
fetch of instances of this type, send a GET request on /api/store/by-type/<ext-name>/<type-name>.

4. Developing Extensions

	4.1. Getting Started

	4.2. Using Tozti’s JS api

4.1. Getting Started

4.1.1. Our first extension

Let’s see how to create a simple extension to tozti. Everything defined by an
extension lives inside the same folder, whose name is the name of the
extension.

Suppose we call it extension-name. Browse to the extensions/ folder and
proceed to create a folder extension-name. The only requirement for
tozti to recognize an extension is for this extension to provide a file
server.py declaring a dictionnary MANIFEST. Thus a minimal definition
would be like so:

MANIFEST = {}

Well done, you’ve just created your first extension!

4.1.2. Defining an API endpoint

The previous extension currently does nothing. We will now see how to add new
API endpoints to the application.

At the moment our MANIFEST is empty. To declare new routes, we must import
some modules:

from tozti.utils import RouterDef
from aiohttp import web
import logbook

	RouterDef allows us to define a new router and therefore new request
handlers.

	web from aiohttp enables us to send back to the user simple
responses.

	logger is a simple utility to pretty print information in the server
logs.

We define a logger, which will enable us to output useful information to the console:

logger = logbook.Logger("tozti-routing")

Then, we create an empty router:

router = RouterDef()

And we add one endpoint to it. We call it hello_world, and make it
accessible from the URL <tozti>/api/extension-name/hello_world:

hello_world = router.add_route('/hello_world')

Finally, we define how our extension should behave when this endpoint is
requested. In this example, we respond to GET requests on this endpoint
with some dummy text:

@hello_world.get
async def hello_world_get(req):
 logger.info("hello world")
 return web.Response(text='Hello world!')

Similar decorators are available for the usual HTTP methods:
@hello_world.post, etc.

Unfortunately, for now tozti still isn’t aware of this new request handler we
just defined. This is where MANIFEST comes into use: We simply add the
router in the MANIFEST dict under the key router:

MANIFEST = {
 'router': router,
}

In fact, MANIFEST is where we declare anything that tozti should be made
aware of.

And now, if you launch the server again, and visit the URL
<tozti>/api/extension-name/hello_world, your web browser should display a
blank web page with the text “Hello world!”. If you look in the server logs,
some hello world must have appeared.

4.1.3. Providing custom javascript to the tozti application

If the previous paragraph showed how to serve content on specific URLs, this is
not how we modify the behavior of the tozti application. tozti is a
single-page app built with the framework Vue.js. Therefore if you want to
be able to interact with the application and define new interactions, you need
to be able to serve custom javascript code to the client.

As a convention, all static assets must be put inside a folder dist inside
your extension folder. Let’s create a file called index.js inside
extension-name/dist/:

tozti.store.commit('registerWidget', {
 template: '<div class="uk-placeholder">A widget coming directly from our extension! :)</div>'
})

As you might have guessed, we need to inform tozti of the existence of this
file, inside MANIFEST:

MANIFEST = {
 # ..
 'includes': ['index.js']
}

Once again, start the server and visit the URL <tozti>/. A new widget
should have appeared inside the Dashboard.

As stated below, adding CSS files in this includes list in exactly the same
fashion allows the inclusion of custom CSS to tozti.

4.1.3.1. Quick note on file structure

Most extensions do not serve directly their javascript files to tozti. They
often split their code in separate files, and use some build process to obtain
a single file build.js out of their code. This is the file that they send
to the client. We will not describe here how to setup such a build process, as
it would end up very much opinionated, and still would have to differ between
extensions. However it is very much recommended to proceed in such a way, and
the sample extensions available on our github page provide some insight as to
how things can be organised.

4.1.4. Going further with MANIFEST

Here are a complete list of keys that MANIFEST can possess:

	router

	This is used to declare new API endpoints. It should be an instance of
tozti.utils.RouterDef. More precisely it must have an
add_prefix() method and it will be passed to
aiohttp.web.UrlDispatcher.add_routes() [https://aiohttp.readthedocs.io/en/stable/web_reference.html#aiohttp.web.UrlDispatcher.add_routes]. Every route declared will
be prefixed by /api/<extension-name>.

	includes

	A list of css or js filenames that must be included in the main
index.html. Usually you will put there your main.js which contains
the code to register or patch components.

	dependencies

	A list of names of extensions that must be loaded before this extension in
order for it to be working as intended.

For more advanced user, you can also add signals for the aiohttp.web in the
MANIFEST. Please see aiohttp server documentation [https://docs.aiohttp.org/en/stable/web.html] to learn more about
signals.

	_god_mode

	Beware, this can be dangerous if used incorrectly! This should be a function
taking as argument the main aiohttp.web.Application [https://aiohttp.readthedocs.io/en/stable/web_reference.html#aiohttp.web.Application] object. You
can use it to register custom middlewares or do otherwise weird stuff.

	on_response_prepare

	This should be a function. It is a hook for changing HTTP headers for
streamed responses and WebSockets.

	on_startup

	This should be a function. Will be called during the startup of the
application. Usefull to launch background services for exemple.

	on_cleanup

	This should be a function. Will be called on application cleanup. You can
use it to close connections to the database for exemple.

	on_shutdown

	This should be a function. Will be closed on application shutdown.

4.1.5. Having a more complex server

Sometimes you can find that putting the whole server part inside server.py is
a bit too restrictive. As your extension grow you’ll probably want to refactor
it in several files. Tozti provide a way to do so. Instead of creating a
server.py file, you could create a server/ folder, and inside it write a
file __init__.py defining (at least) the MANIFEST structure.

4.2. Using Tozti’s JS api

4.2.1. Defining routes on the client side

If you read Getting Started you learned how to define new API endpoints.
But you might want that your extension also provide some endpoints on the
client, to display a special page for example.

You can take a look at how the extension vue-counter of the sample-extensions [https://github.com/tozti/sample-extensions]
repository uses this mechanism to define a counter reachable on <tozti>/counter.

Tozti’s extensions are using vue, so it is natural that we use vue-router in order
to define new routes.

Imagine you want to define a new ‘page’ displaying a component called Calendar that
can be accessed on <tozti>/mycalendar. Then, you must add the following lines in your
index.js:

tozti.routes.unshift(
 { path: '/mycalendar', component: Calendar }
)

4.2.2. Adding items in the menu bar

An exemple can be found in the extension add-menu-item that can be found in the
repository sample-extensions [https://github.com/tozti/sample-extensions].

Every extensions can add items in the sidebar. We will focus on what we call menu items:
items that are attached to tozti as a whole, not to a workspace.

The corresponding method allowing to do that is called tozti.addMenuItem.
Here are following examples of usage:

	Adding an item with the text ‘item’ associated with the route target/:

tozti.addMenuItem('item', 'target/')

	Adding an item with the text ‘item’ associated with the route target/
and the icon ‘nc-home-52’:

tozti.addMenuItem('item', 'target/',
 props = {'icon': 'nc-home-52'}
)

5. API Reference

5.1. tozti.utils

	
exception tozti.utils.APIError(msg=None, status=None, **kwargs)

	Base class for API errors.

	
to_response()

	Create an aiohttp.web.Response signifiying the error.

	
class tozti.utils.ExtendedJSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	JSON encoder handling datetime.datetime and uuid.UUID.

	
class tozti.utils.RouteDef(path, name=None)

	Definition of a route.

The method get(), post(), put(), etc can be used as
decorators to specify the handler for the given HTTP method.

	
any(handler)

	Decorator used to specify handler for every method.

	
delete(handler)

	Decorator used to specify DELETE method handler.

	
get(handler)

	Decorator used to specify GET method handler.

	
head(handler)

	Decorator used to specify HEAD method handler.

	
options(handler)

	Decorator used to specify OPTIONS method handler.

	
patch(handler)

	Decorator used to specify PATCH method handler.

	
post(handler)

	Decorator used to specify GET method handler.

	
put(handler)

	Decorator used to specify PUT method handler.

	
register(app)

	Add all our routes to the given aiohttp.web.Application.

	
route(*meth)

	Decorator (with arguments) used to specify HTTP handler.

	
class tozti.utils.RouterDef

	Handle route definitions.

This object can be used as argument to
aiohttp.web.UrlDispatcher.add_routes() [https://aiohttp.readthedocs.io/en/stable/web_reference.html#aiohttp.web.UrlDispatcher.add_routes].

Sample usage:

router = RouterDef()
route = router.add_route('/foo')

@route.get
def handle_get(req):
 return ...

See aiohttp [https://aiohttp.readthedocs.io/en/stable/web.html#resources-and-routes] for more informations on resources and routing.

	
add_prefix(prefix)

	Prefix every contained route.

	
add_route(path, name=None)

	Add and return a route with given path to the router.

	
tozti.utils.json_response(data, **kwargs)

	Wrapper for aiohttp.web.json_response with extended JSON encoder.

	
tozti.utils.validate(inst, schema)

	Validate data against a JsonSchema.

5.2. tozti.store

5.3. tozti.app

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tozti	

 	
 	
 tozti.utils	

Index

 A
 | D
 | E
 | G
 | H
 | J
 | O
 | P
 | R
 | T
 | V

A

 	
 	add_prefix() (tozti.utils.RouterDef method)

 	add_route() (tozti.utils.RouterDef method)

 	
 	any() (tozti.utils.RouteDef method)

 	APIError

D

 	
 	delete() (tozti.utils.RouteDef method)

E

 	
 	ExtendedJSONEncoder (class in tozti.utils)

G

 	
 	get() (tozti.utils.RouteDef method)

H

 	
 	head() (tozti.utils.RouteDef method)

J

 	
 	json_response() (in module tozti.utils)

O

 	
 	options() (tozti.utils.RouteDef method)

P

 	
 	patch() (tozti.utils.RouteDef method)

 	post() (tozti.utils.RouteDef method)

 	
 	put() (tozti.utils.RouteDef method)

 	
 Python Enhancement Proposals

 	PEP 405

R

 	
 	register() (tozti.utils.RouteDef method)

 	route() (tozti.utils.RouteDef method)

 	
 	RouteDef (class in tozti.utils)

 	RouterDef (class in tozti.utils)

T

 	
 	to_response() (tozti.utils.APIError method)

 	
 	tozti.utils (module)

V

 	
 	validate() (in module tozti.utils)

Internals

This part of the documentation focuses on Tozti the school project: it
contains documentation about how we organize ourselves, a summary of
important meeting we have. Actually anything that is more related to
the software project course than the content of the project itself.

	1. How we communicate
	1.1. Github

	1.2. Slack

	1.3. Sphinx Documentation

	2. Writing tests
	2.1. How to run

	2.2. Test architecture

	2.3. Writing tests for Tozti with pytest

	3. Tutorials
	3.1. Using Javascript

	3.2. Using git

	4. Workflow for developping an extension
	4.1. Creating a new extension

	4.2. Working on an extension

	5. Install tozti in a computer room
	5.1. The python part

	5.2. The javascript part

	5.3. Launching tozti

	6. Weekly Meetings
	6.1. 2017-10-10

1. How we communicate

1.1. Github

The main home for things we produce is on the github organization [https://github.com/tozti].
Everything that we don’t want to be lost should be put there in one way or
another at some point. If you want to attract attention in an issue you
can ping people or a team by prefixing it’s name with an “@” character.

Don’t fear to start an issue about anything that bugs you, if the issue is
trivial it’s going to be rapidly closed. If you want some review on the code
you are writing in a feature branch, you can start a pull request long before
it’s ready to be merged, this is the ideal place to talk about a specific part
of the code.

TODO (issue tagging)

1.2. Slack

Our slack workspace [https://groupware-ens.slack.com] hosts discussions about the project (or not). It’s the
ideal space to have informal discussions, online meetings or to notify a team.
Even if we put a lot of effort into making it organized, messages will get lost
at some point, so if you come up with something interesting enough, be sure to
sum it up and write about it in a related issue or in the present
documentation.

Still, to keep it somewhat organized, try to stick to the following policies:

	When you create a temporary channel (eg for a meeting), don’t forget to
archive it when it’s ended so that it doesn’t clutter the list. Don’t create
unnecessary channels as this is the best way to get to “where was this
interesting link again?”.

	Keep the “#general” channel tidy: it should only contain important
announcement. If you want to reply, use the start a thread feature – this
feature is handy, you are welcome to (ab)use it on other channels too.

	If a specific message is important in a channel be sure to make it sticky
but don’t forget to unstick it when as soon as it’s obsolete.

1.3. Sphinx Documentation

The final consensus of any midly important discussion or the explaination about
a complex piece code should end up in this documentation. There are 3 main parts:

	the user part – explainations about the UI and high level stuff about
how the internals work

	the developper part – in-depth explainations about how the code works and how
one should interact with it

	the internal part – you are reading it

If you feel like you are in the process of finishing something important, start
writing about it in the documentation. If you don’t feel confident writing it
(or don’t have the time right now) start an issue in the documentation
repository stating that this should be done together with some explainations or
a link to what should be documented.

The documentation is written in reStructuredText (reST) markup and uses the
sphinx [http://www.sphinx-doc.org/en/stable/] tool to render in HTML. You can look at this cheatsheet [http://www.sphinx-doc.org/en/stable/rest.html] for an
introduction to reST. The specification [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] is useful too. The documentation is
being built automatically by readthedocs.io [https://tozti.readthedocs.io/en/latest/] but if you want to build it
locally before pushing your changes, just type make html inside the
docs directory. The built documentation will sit inside
docs/_build/html. Tip: python3 -m http.server 8080 starts an HTTP
server listening on port 8080 and serving the local directory. Be sure not to
include the build result in your commits.

5. Install tozti in a computer room

As you do not have enough credentials in the computer rooms of the ENS to install node, npm and therefore tozti. Here is a step by step guide on how to make tozti works in the computer rooms.

5.1. The python part

Tozti is divided in two parts:
- a python part
- a javascript part

For convenience, we use virtualenv to install the dependencies. But doing python3 -m venv .venv doesn’t work in the computer rooms. However, virtualenv is installed.

Hence, the python’s part of tozti’s setup becomes:

virtualenv -p python3 .venv
. .venv/bin/activate
pip3 install -r requirements.txt

5.2. The javascript part

We need to install node and npm locally. Type the following command in your terminal:

curl https://raw.githubusercontent.com/creationix/nvm/v0.33.1/install.sh | bash

Restart your terminal and install node:

nvm install node

Then go back to tozti’s folder to install the js dependencies:

npm install

And finally build tozti’s js parts:

npm run build

5.3. Launching tozti

To run tozti it’s the same as usual:

python3 -m tozti dev

2. Writing tests

We are using pytest [https://docs.pytest.org/en/latest/] in order to write our tests.

2.1. How to run

Before running the tests, make sure the dependencies in requirements-dev.txt are installed.
Running the tests will clean your mongodb and remove every extensions, so make sure you made a backup if needed. Tests must go inside tests/ folder.

You might need to install chromedriver (chrome driver) or geckodriver (Firefox driver).

To run the tests, the simplest way is to execute pytest tests/ --driver [Firefox|Chrome] to launch the whole test suite. If you want to only execute the tests included in tests/test_foo.py, then you can use the command pytest tests/test_foo.py --driver [Firefox|Chrome].

If you have any problems with the tests, it might be because they are launched with python2 instead of python3. In this case, instead of running pytest [args], run python3 -m pytest [args]

2.2. Test architecture

We can divide our testing architecture into three parts.

2.2.1. Travis

We are using travis [https://travis-ci.org] for continuous integrations. Each time a commit
is pushed on master, travis will install everything tozti needs
to run and also execute our test suite. This enables us to see in a glance
if the modifications we made are breaking something.

2.2.2. Unit testing

Unit testing is one of the two types of tests we have. It consists in
testing some functions independently from all others. As they are very long
to write, only the topological sort and the mechanism to find extensions
have unit tests.

2.2.3. Integration testing

Integration tests do not target a single functions (like unit tests),
but tests the behaviour of the whole of Tozti. We use intensive integration testing
in order to test the storage, the router and the js-router mechanisms.

Here, a test consists of:

	loading an extension

	launching tozti

	testing one functionality

	closing tozti

2.3. Writing tests for Tozti with pytest

Writing a test with pytest is easy. First, you need to create a python file prefixed by tests_ which will contain your test function. A test file can contain several test functions and should import pytest.
A test function must have a name starting with test_. Its name must be explicit as it will be displayed upon test failure. Finally, a test fails if it raises an exception. Assertions are convenient when writing tests. assert expr will do nothing if expr evaluates to False, and will fail otherwhise.

A test should:

	not rely on data not defined inside of the test. If you have 10 tests, then the result of executing the test must be independent of the order in which they are executed

	be precise and test only one thing

	change rarely. Each time you edit a test it looses part of its purpose.

2.3.1. Passing parameters to a test

Most of the time your tests will not take any arguments and will be self contained. But sometimes, you will want to write a generic test and use it on different inputs and outputs.
For exemple, to test a function foo that takes two arguments and computes their sum, you could do this:

def test_foo_1():
 assert(foo(3, 4) == 7)
def test_foo_2():
 assert(foo(0, 4) == 4)

This is correct, but it is more convenient to write:

@pytest.mark.parametrize("a, b, expected", [(3, 4, 7), (0, 4, 4)])
def test_foo(a, b, expected):
 assert(foo(a, b) == expected)

Here, we are parameterizing the test over the arguments a, b and expected.

2.3.2. The notion of Fixture

You may want to execute something before and after your test. For instance launch a background process, initialize the connection to a database and make sure it is correctly closed. That is what Pytest’s fixture [https://docs.pytest.org/en/latest/fixture.html] is for. I will not dwell on it too much, as there are several online ressources.

You can find one particularly useful fixture in the file tests/conftest.py. This fixture, called tozti, will:

	install a series of extension if needed

	launch tozti

	execute Tozti

	completly close Tozti

The following is a simple example of how to use it:

@pytest.mark.extensions(["extension1", "extension2",, "extensionn"])
def test_ultra_super_genial(tozti):
 test_something

The line @pytest.mark.extensions(...) is used to specify the names of the extensions which should be installed. The extensions themselves must be put in the folder tests/extensions.
You can then use the object tozti (which is a subprocess.Popen object if tozti could be launched, None otherwise) in order to perform some operations. For exemple, the function tozti_still_running(tozti) returns True if tozti is still running.

Other fixture are also present in tests/conftest.py. The fixture db will load a mongodb database and empty it before the test for exemple. Notice that importing tests/conftest.py is not needed in order to use the fixtures as this file is automatically loaded by pytest. As such you should beware with defining variables named db or tozti.
You can find other usefull fonctions inside tests/commons.py. To include a function defined there (for exemple tozti_still_running), please add the following line:

from tests.commons import tozti_still_running

3. Tutorials

3.1. Using Javascript

Since we are going to develop a single-page app, a considerable part of the code
will be targeted to and executed by web browsers, meaning: Javascript.

For ease of learning and to agree on something to get started, we settled on using
plain javascript ES6 rather than languages such as Elm.

Here are some links to learn Javascript, particularly the more recent ES6 specification,
that makes syntax orders of magnitude more convenient.

	
https://javascript.info/

It seems to cover the essentials. You can really skim through the entire guide,
since you will a find a lot of similarities with any non restrictive scripting language,
much like python.

	
https://babeljs.io/learn-es2015/

This guide puts the emphasis on what is new with the ES6 specification (previously known as ES2015).

While not all of it is relevant, you should pay close attention to new features that
make writing js - dare I say - beautiful.

Most notably:

	Arrow functions.

	Destructuring and Spread operator.

	Classes.

	Let & Const declaration, that should be preferred to var.

3.1.1. Style conventions

TODO:
- describe the code style we aim at.
- one part dedicated to syntax.
- the other dedicated to how we organize code, structural choices.

3.2. Using git

We will give a short list of usefull git commands in this section. For a more
complete introduction to git, please refer to the following links:

	the gittutorial [https://git-scm.com/docs/gittutorial]

	the atlassian tutorials [https://www.atlassian.com/git/tutorials],
particularly setting up a repository [https://www.atlassian.com/git/tutorials/setting-up-a-repository], saving
changes [https://www.atlassian.com/git/tutorials/saving-changes], undoing
changes [https://www.atlassian.com/git/tutorials/saving-changes], syncing [https://www.atlassian.com/git/tutorials/syncing] and using branches [https://www.atlassian.com/git/tutorials/using-branches].

	an interactive tutorial [https://try.github.io/levels/1/challenges/1] by
github

3.2.1. Golden rules

	The branch master is here only for working and tested stuff. Never commit to
it directly but instead pull commits from other branches to it once they make
a consistent group.

	Never alter commits that have been pushed to a public (remote) repository.

3.2.2. Cheatsheet

	git clone <repo>

	Create a local copy of the distant repository repo.

	git add <file>

	Add a file to the next commit, this is called staging a file.

	git commit -m "<message>"

	Commit the staged files with the specified message (instead of launching the
editor).

	git push <remote> <branch>

	Push branch to the remote repository. By default remote
is set to origin (i.e. the repository you cloned).

	git fetch <remote> <branch>

	Download the branch from the remote repository.

	git merge <branch>

	Combine branch onto the current branch. If there are conflicts they will
be explained. It will fast-forward if possible.

	git pull <remote> <branch>

	Equivalent to git fetch followed by git merge.

	git checkout <file>

	Revert file in the working directory to it’s last commited state.

	git checkout <branch>

	Switch the working directory to branch. Uncommited changes in the
working directory are kept. It will transparently create a new local
tracking branch if branch is a remote branch.

3.2.3. Using branches

Branches are used to separate independant parts of the work to identify what is
related and what is not. Once the work is done the branch should be merged back
into the master. A branch is just a named reference to a commit (which is the
HEAD of the branch) so it’s really lightweight and should be abused.

Say you want to work on something new called feature1. First you have to
check out the branch you want to fork from (probably master) with git
checkout master, then create the branch with git branch feature1. You
could also use git checkout -b feature1 instead which will additionnaly
checkout the branch (as you probably want to work on it right away).

Now the branch is local, you might want to push it upstream. To do it, use
git push -u origin feature1. If you want to change the upstream name of the
branch, use git push -u origin feature1:better-name.

If you want to work on a branch that already exists remotely but not locally,
you want to create a local branch that tracks the remote branch with git
branch -t local_feature1 origin/feature1. But most of the time you want the
branch to have the same name and there is a shortcut for that: git checkout
feature1 will do exactely what you want (create a local tracking branch)
and check it out.

Now that some work is done, you want to merge back the feature1 branch onto
master. To do that, checkout master with git checkout master, merge the
branch with git merge --no-ff feature1, resolve the conflicts if there are
any, then git commit and finally push your changes with git push origin
master.

If you are sure that the branch is not going to be used anymore you can delete
it (it just deletes the reference). To delete the local branch type git
branch -d feature1 (or -D if it wasn’t merged, but careful you will loose
the commits), to delete the remote branch, use git push origin :feature1.
If the branch is not going to be used anymore but you feel it was important
enough to keep track of it, you can tag it just before deleting it with git
tag archiving-name feature1. Names can contain slashs so an appropriate name
for the tag might be dead/feature1.

3.2.4. How to write good commit messages

TODO: magic messages

6. Weekly Meetings

Summary of the weekly full-team meetings.

6.1. 2017-10-10

	We stressed the fact that the arch team needs precise specifications from
the module teams to take meaningful decisions.

	In two groups we started this specification work, coming up with drafts of
these specifications for the discussion, calendar and multimedia
modules.

	We talked about how to design useful specifications and how to organize the
next meetings. Things that were brought up: specification by examples
(so-called scenarios) and scrum.

Goals for the next meeting:

	The module teams should come up with precise specifications and rough
mockups.

	The arch team should present the precise architecture of the project (how
modules will mesh up together, what technology stack will be used, etc.).

	The UX team should give mockups for the module-agnostic views (mainly the
landing page, with some kind of dashboard).

4. Workflow for developping an extension

This is a short guide on how to develop extensions efficiently.

4.1. Creating a new extension

To create an extension, download the files contained inside the repository
tozti-boilerplate [https://github.com/tozti/tozti-boilerplate].This will setup the build process in order to develop
an extension using sass and vue-js.

4.2. Working on an extension

Working on an extension can be splitted into several steps:

Firstly, you must install the extension. For that, first install Tozti and
then either:

	clone the extension you want to work on inside tozti/extensions

	clone the extension elsewhere and create a simlink from
tozti/extensions/<yourextensionname> to the directory of the extension
(for more ‘advanced’ users)

Secondly, setup your extension. For instance, execute npm install and
npm run build (inside your extension’s directory).

Then, launch Tozti in the background. If, while you’re developping your
extension, you are updating the server part of the extension, then you
will have to stop and start Tozti again. Otherwise if you are only working
on the javascript part you should not touch to Tozti anymore.

Finally, you can execute npm run watch in the background. This will
allow the javascript part of the extension to be build automatically. You
should not touch to this process either.

If you followed every step, then to see the changes you made to your extension
you should only have to reload the webpage inside your webbrowser!

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 The Tozti Project

 		
 Quickstart

 		
 Architecture

 		
 Extensions

 		
 Directory structure and server.py

 		
 Vuejs initialization

 		
 API

 		
 Error format

 		
 Concepts and Data Structures

 		
 Resources

 		
 Relationships

 		
 Types

 		
 Endpoints

 		
 Resources

 		
 Relationships

 		
 Types

 		
 Developing Extensions

 		
 Getting Started

 		
 Our first extension

 		
 Defining an API endpoint

 		
 Providing custom javascript to the tozti application

 		
 Going further with MANIFEST

 		
 Having a more complex server

 		
 Using Tozti’s JS api

 		
 Defining routes on the client side

 		
 Adding items in the menu bar

 		
 API Reference

 		
 tozti.utils

 		
 tozti.store

 		
 tozti.app

_static/up.png

_static/up-pressed.png

